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Summary. Parameters of the formalism [1–6] describing spin crossover in the solid state have been

defined via molecular potentials in model systems of neutral and ionic complexes. In the first instance

Lennard-Jones and electric dipole–dipole potentials have been used whereas in ionic systems Lennard-

Jones and electric point-charge potentials have been used. Electric dipole–dipole interaction of neutral

complexes brings about a positive excess energy controlled by the difference of electric dipole

moments of HS and LS molecules. Differences of the order of ��¼ 1–2 D cause an abrupt spin

crossover in systems with T1=2 ¼ 100–150 K. Magnetic coupling contributes both to the excess energy

and excess entropy, however the overall effect is equivalent to a modest positive excess energy. Ionic

systems in the absence of specific interactions are characterised by very small excess energies corre-

sponding to practically linear van’t Hoff plots. Detectable positive and negative excess energies in these

systems may arise from interactions of ligands belonging to neighbouring complexes. The HOMO–

LUMO overlap in HS–LS pairs can bring about a nontrivial variation of the shape of transition curves.

Examples of regression analysis of experimental transition curves in terms of molecular potentials

are given.

Keywords. Molecular magnets; Molecular potentials; Solid state; Spin crossover; Thermodynamics.

Introduction

In our previous communications [1–6] we have developed a formalism that
allows one to adequately parameterise quite complicated transition curves of spin
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crossover observed in the solid state. Parameters of this formalism arise from the
changes of the partition function (or free energy F¼NkTlnZ) of a given molecule
due to LS!HS transition (i) of the molecule itself and (ii) of molecules in the
nearest surroundings of the considered one. In the first instance these parameters
are standard free energies of spin crossover in the state of pure compound
�F0¼FBBB�FAAA the index BBB denoting HS-molecule B in a homo-molecular
environment (similar meaning has the index AAA with respect to LS-molecule A).
Parameters of the second type are the excess free energy �FE¼FABA�
FBBBþFBAB�FAAA (in which the indices ABA and BAB denote molecules B
and A in hetero-molecular environments respectively) and the asymmetries of
splittings �A

i ¼ 2FAAB�FAAA�FBAB, �B
i ¼ 2FBBA�FBBB�FABA characteris-

ing many-body interactions in the mixture of HS and LS isomers. Parameters of
the first type can be independently determined from calorimetric measurements
whereas those of the second type can only be estimated by regression of experi-
mental transition curves or computed according to some theoretical model of
molecular interactions. A short review of contemporary theoretical models of spin
crossover equilibrium is given in the introduction to Part I of these communications
[6]; more detailed information can be found in Refs. [7, 8].

A theoretically based molecular design of promising spin crossover compounds
requires a method of an easy evaluation (for model structures) of the sharpness of
spin crossover transition operating with simple molecular parameters such as inter-
atomic distances, bond angles, electric dipole moments, etc. Molecular potentials
such as the Lennard-Jones potential and those of coulombic dipole and point-charge
interactions can be advantageously used for this purpose. Parameters of the for-
malism developed in Refs. [1–6] can be represented via energies derived from these
potentials. Assuming entropic effects of molecular interactions (changes of electron-
ic degeneracy, molecular volume, and vibrational frequencies due to spin transi-
tions in the nearest surroundings) to be negligibly small, the non-ideality parameters
of the model of triple interactions [1–5] can be written as shown by Eqs. (1)–(5) in
which ’ are binary and  are three-center potentials and the multiplier 3 appears as
a result of summing energy over three coordinates assumed to be equivalent.

�A ¼ ðEAAB � EBABÞ þ ðEAAB � EAAAÞ
¼ 3�f½’AA � ’AB� þ ½’AB � ’AA� þ 2 AAB �  BAB �  AAAg
¼ 3�ð2 AAB �  BAB �  AAAÞ ð1Þ

�B ¼ ðEABB � EABAÞ þ ðEABB � EBBBÞ
¼ 3�f½’BB � ’AB� þ ½’AB � ’BB� þ 2 ABB �  ABA �  BBBg
¼ 3�ð2 ABB �  ABA �  BBBÞ ð2Þ

DA ¼ EBAB � EAAA ¼ 3�ð2’AB � 2’AA þ  BAB �  AAAÞ ð3Þ

DB ¼ EABA � EBBB ¼ 3�ð2’AB � 2’BB þ  ABA �  BBBÞ ð4Þ

�EE ¼ DA þ DB

¼ 3�ð4’AB � 2’AA � 2’BB þ  ABA �  BBB þ  BAB �  AAAÞ ð5Þ
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It must be emphasised that the energies EAAA, EAAB, etc. in Eqs. (1)–(5) are the
energy levels of the central molecule and not the energies of these configurations.
Therefore we do not take into account the energy of interaction of outer molecules
(e.g. ’BB in BAB).

In this paper we consider the effects of several binary molecular potentials on
non-ideality parameters. Binary potentials in square brackets in Eqs. (1) and (2)
compensate each other therefore the asymmetries must be controlled by ternary
(and implicitly by higher order) interactions alone. According to Ref. [9] ternary
interactions constitute up to several percents of the total lattice energy in alkali
halide crystals, i.e. at least several kJ=mol. However, if some binary interactions act
selectively in one or several configurations then one may expect certain contribu-
tion from such binary interactions towards �A(B) (see below, HOMO–LUMO
Overlap in HS–LS Pairs). Macroscopically long-range elastic interactions [10]
are implicitly taken into account in our model in a zero approximation as contri-
buting towards the standard energy of spin crossover.

Results and Discussions

Systems of Neutral Molecules

Spin crossover compounds can be separated into two families, namely those of
neutral (e.g. Fe(phen)2(NCS)2]) and ionic (e.g. [Fe(ptz)6](BF4)2) compounds. In the
latter case anions do not enter the first coordination sphere of Fe2þ surrounded by
six nitrogen atoms belonging to neutral ligands. Major intermolecular forces in the
first type of spin crossover compounds can be represented by Lennard-Jones and
electric dipole–dipole potentials. Molecular interactions in complexes belonging to
the second family are more correctly described by the combination of Lennard-
Jones and electric point-charge potentials. In both cases these major interactions
are accompanied by several specific interactions.

In order to calculate non-ideality parameters according to Eqs. (1)–(5) the
knowledge of intermolecular distances corresponding to the minimum of the
total potential is required. The distances in pure HS and LS states can be
taken from experimental data on a ‘prototype’ compound. Parameters aij of
the Lennard-Jones potential (van der Waals diameters) are usually unknown
for spin crossover complexes, however they can be optimised in such a way
that the minimum of the total potential occurs at the experimental distance
(see Methods).

As the prototype compound for neutral complexes we have chosen cis-bis-
(thiocyanato)bis[N-(20-pyridylmethylene)-4-aminobiphenyl)]Fe(II), described in
Ref. [11] (Fe(PM-Bia)2(NCS)2). Schematic arrangement of these molecules in
the chain AAB is shown in Fig. 1. According to Ref. [11] an LS!HS tran-
sition in [Fe(PM-Bia)2(NCS)2] is accompanied with a change in Fe–Fe (average)
distances from 10.739 Å (LS) to 10.948 Å (HS) yielding �r¼ 0.209 Å. At
the same time the average length of Fe–N bond is increased by 0.189 Å. Semi-
empirical quantum chemical calculations (HyperChem 5TM, ZINDO=1) on
[Fe(PM-Bia)2(NCS)2] show that these molecules possess large electric dipole
moments: 22.426 D in HS and 22.812 D in LS states.
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A rough estimate of the depth of the potential well in the Lennard-Jones
potential was derived from the evaporation heat of Fe(CO)5 and assumed to be
"AA¼ 12 kJ mol�1; a slightly larger value was assumed for the HS–HS pairs:
"BB¼ 14 kJ mol�1, taking into account higher polarisability of the HS state.

The depth of the potential well in hetero-molecular pairs was calculated
according to the modified Berthelot’s rule (Eq. (6)) in which �" reflects deviations
due to interactions not explicitly included into the model.

"AB ¼ ðI þ �"Þð"AA"BBÞ1=2 ð6Þ
The effect of compression was explored by varying rAA; other distances

were assumed to change inversely proportional to the corresponding force con-
stants. The latter were estimated by approximating the potential curves in a narrow
region around the minimum by quadratic parabolas. Transition curves have
been computed for a model system characterised by �E0¼ 14 kJ mol�1 and
�S0¼ 90 J mol�1 K�1 (T1=2 ¼ 155.5 K); �E0 and �S0 have been considered as
unaffected by compression. The critical value of the excess energy for the abrupt
spin crossover in such systems (�EE¼ 2RT1=2) equalsþ 2.58 kJ=mol whereas the
negative excess energy of a similar magnitude (at zero �A and �B) brings about a
two-step spin crossover.

Lennard-Jones and Electric Dipole–Dipole Potentials (Basic Model)

The potential energy of a pair of polar molecules can be written as shown by Eq. (7)
[12] in which f(�) is the geometrical factor equal 2 for the ‘‘head-to-tail’’ arrange-
ment of dipole moments �i, �j (according to XRD data [11]).

’ij ¼ "ij

��
aij

rij

�12

� 2

�
aij

rij

�6�
� �i�j

r3
ij

f ð�Þ ð7Þ

The condition of mechanical equilibrium d’ij=drij¼ 0 for this potential yields a
cubic equation with respect to (aij=rij)

3 (Eq. (8)).

d’ij

drij
¼ 12"ij

rij
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�
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�12
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ij

¼ 0 ð8Þ

Fig. 1. Model chain of neutral complexes and their van der Waals diameters (configuration AAB)
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This equation can easily be solved numerically yielding equilibrium distances
required for the calculation of energies. According to these calculations the consid-
ered basic system is characterised by a modest positive excess energy (ca. 1 kJ=mol),
only slightly dependent on reasonable compressions (r=ropt¼ 0.98–1.02, Fig. 2A).
The pattern of energy levels corresponds to EBAB>EAAA and EABA<EBBB, i.e.
DA>0, DB<0. This pattern is reversed at �B>�A but the excess energy remains
positive for both �B>�A and �B<�A. It passes through a minimum (Fig. 2B) at
�A��B. Assuming the geometrical factor f(�) to be unaffected by spin crossover the
electrostatic component of �EE can be written as given by Eq. (9) in which r is the
mean intermolecular distance.

�EE ¼ �6
�A�B

r3

�
2

�
r

rAB

�3

� �B

�A

�
r

rBB

�3

� �A

�B

�
r

rAA

�3�
ð9Þ

It changes at HS!LS transitions by less than 2%, therefore one can assume
r=rij� 1, leading to Eq. (10).

�EE � 6ð�A � �BÞ2

r3
ð10Þ

This quadratic dependence explains why �EE remains positive when the sign of
�A–�B is changed. The difference in electric dipole moments of HS and LS states
required for the observation of the abrupt spin crossover (at �"¼ 0) is ca. 1.35 D.

Fig. 2. Variations of DA (1), DB (2), and �EE (3) with compression (A); graph B shows the

dependence of �EE on the electric dipole moments of A-species at constant �B¼ 22 D

Table 1. Effects of deviations of "AB from Berthelot’s rule in the basic model system of neutral

complexes

rAA=ropt �"¼ þ 0.04 �"¼ � 0.02

DA

kJ=mol

DB

kJ=mol

�EE

kJ=mol

DA

kJ=mol

DB

kJ=mol

�EE

kJ=mol

0.980 3.104 �6.220 �3.117 6.2358 �3.0884 3.1474

1.000 3.048 �6.116 �3.068 6.1326 �3.0318 3.1008

1.020 3.087 �6.182 �3.095 6.1980 �3.0702 3.1278
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Deviations of "AB from Berthelot’s rule (due to unaccounted interactions) bring
about considerable excess energies: negative for �">0 and positive for �"<0
(Table 1). Positive deviations above �"¼þ0.04 may cause a two-step spin cross-
over (Fig. 3, curves 3, 3a); negative deviations with j�"j>0.02 cause an abrupt spin
crossover (Fig. 3A, curve 1).

Overlap of HOMO and LUMO of Neighbouring Complexes in HS–LS Pairs

Among specific interactions in spin crossover compounds the overlap of HOMO
(HS) and LUMO (LS) in HS–LS pairs can play an important role. If a semi-filled
eg orbital of an HS Fe(II) complex overlaps with an empty eg orbital of a neigh-
bouring LS complex then unpaired electrons of HS species can be transferred into a
bonding ‘intermolecular’ orbital (Fig. 4) that causes a stabilisation of HS–LS pairs.

The effect of stabilisation of HS–LS pairs can be simulated by positive devia-
tions from Berthelot’s rule. Splittings �st (Fig. 4) of the order 100 cm�1 correspond
to �"� 0.05, sufficient to bring about a two-step spin crossover.

This HOMO–LUMO overlap can also cause a redistribution of electronic
charge densities in the interacting species. This effect can be accounted for by
selective variations of the energy of dipole–dipole interaction in HS–LS pairs
(Eq. (11)) in which �� reflects the deviation of electric dipole moments due to
overlap.

"ddðABÞ ¼ �ð1 þ a�Þ
2�A�B

r3
AB

ð11Þ

Fig. 3. Transition curves (at rAA=ropt¼ 1.0) showing effects of non-additive "AB (A); curves 1, 2, 3

correspond to �"¼ � 0.02, 0, and þ0.04 respectively; graph B shows curve 3 along with the

corresponding temperature dependence of the degree of order (the dashed line 3a)

Fig. 4. Energy level diagram illustrating the overlap of eg orbitals in a HS–LS molecular pair
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The energy of dipole–dipole interaction of neutral spin-crossover complexes is
large therefore very small relative deviations �� strongly affect the excess energy
(see Table 2).

The depression of dipolar energy by �0.004 brings about large positive
�EE¼þ3.39 kJ=mol, i.e. above the critical value for the abrupt spin crossover; neg-
ative excess energy of a similar magnitude (�EE¼�3.56 kJ=mol corresponding
to ��¼þ0.008) causes a conversion of a smooth transition curve into a two-step
transition. The variation of non-ideality parameters arising from these effects with
compression is insignificant.

Magnetic Scalar Coupling

The energy of magnetic scalar (exchange) interaction in transition metal complexes
can be quite significant [13, 14] and therefore contributes towards the non-ideality
parameters of spin crossover equilibrium. In complexes of 3d elements the
exchange coupling constants vary from zero to several hundreds of cm�1; the
magnitude and sign of the coupling constant depends on the angle metal-bridge-
metal but is apparently independent of the metal-to-metal distance [14]. To a first
approximation this type of interaction can be assumed to be independent of inter-
molecular distances and compression. Experimentally it was found that magnetic
exchange interaction occurs in polynuclear spin crossover compounds [15–17]; no
such data exist on mononuclear compounds.

Magnetic scalar coupling occurs between HS species, i.e. in BBB and BBA
configurations alone. The energy of magnetic exchange interaction in a pair can be
calculated as shown by Eq. (12) [13] in which S is the spin of individual HS species
and S0 is the total spin of a pair.

EðS0Þ ¼ �J½S0ðS0 þ 1Þ � 2SðSþ 1Þ� ð12Þ
Computing the energy of molecular interactions via this mechanism implies

averaging it over pairs with S0 ¼ 0, 1, 2, 3 and 4; this results in Eq. (13).

E ¼
P

EðS0Þð2S0 þ 1Þe�
EðS0Þ
kTP

ð2S0 þ 1Þe�EðS0Þ
kT

¼ 6J
�12eþ

8J
kT þ 5

�
e�

6J
kT þ e�

10J
kT

�
þ 2e�

12J
kT

7 þ 9eþ
8J
kT þ 5e�

6J
kT þ 3e�

10J
kT þ e�

12J
kT

ð13Þ

The energy of this interaction is negative for both ferro- (J>0) and anti-
ferromagnetic (J<0) interactions and temperature dependent (Fig. 5). This inter-
action contributes therefore towards both the excess energy and excess entropy.
Being approximated by straight lines the dependencies shown in Fig. 5A yield

Table 2. Effects of selectively varied energy of electric dipole–dipole interaction in LS–HS pairs:

"dd¼�A�B(1þ��)=rAB
3; Lennard-Jones potentials are characterised by additive "AB (�"¼ 0,

rAA=ropt¼ 1)

�� DA

kJ=mol

DB

kJ=mol

�EE

kJ=mol

�� DA

kJ=mol

DB

kJ=mol

�EE

kJ=mol

0.0000 5.122 �4.042 1.080

�0.002 5.702 �3.463 2.239 þ0.002 4.543 �4.622 �0.079

�0.008 7.439 �1.725 5.714 þ0.008 2.803 �6.362 �3.559
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considerable excess energies and entropies (Table 3). However these contributions
compensate each other to a considerable extent.

Equation (13) being directly inserted into the simulation program yields
small variations of the shape of transition curves due to magnetic scalar coupling
typical for positive excess energies. Only the exceptionally strong interaction
(J<�40 cm�1 or J>þ50 cm�1) could bring about an abrupt spin crossover.
Experiments only indicate a weak antiferromagnetic coupling in binuclear spin cross-
over compounds of Fe(II) [18] and Co(II) [19] with J��4 cm�1 and J¼�14 cm�1

respectively. Therefore one may only expect an insignificant increase of the slope of
transition curve as a result of magnetic scalar coupling.

Magnetic scalar coupling not only contributes towards non-ideality parameters
but also affects the effective magnetic moment of HS species, hence the results of
calculations of the composition of spin crossover equilibrium mixture from mag-
netochemical data. This means that if such an interaction is suspected the estima-
tion of non-ideality parameters should be done employing non-magnetic data
(M€oossbauer or optical spectroscopic data) or magnetochemical data normalised
to M€oossbauer measurements in several points. Purely magnetochemical data (most
abundant in literature) on such systems can be parameterised in coordinates �T – T
the value of scalar coupling constant being one of the parameters of regression
equation. However, these problems are beyond the scope of the present paper. We
also do not consider magnetically ordered states arising from strong exchange
interactions.

Table 3. Contribution of magnetic scalar coupling towards excess energy and excess entropy

J

cm�1

�SE

J mol�1 K�1

�EE

kJ mol�1

J

cm�1

�SE

J mol�1 K�1

�EE

kJ mol�1

�10 20.4 7.014 þ10 14.4 5.478

�20 37.2 16.536 þ20 22.2 12.144

�30 44.4 25.836 þ30 21.6 18.222

Fig. 5. Temperature dependencies of the energy of magnetic scalar coupling in pairs HS complexes

of Fe(II) with antiferromagnetic (J<0, A) and ferromagnetic (J>0, B) interactions
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Ionic Systems

As a prototype compound for ionic systems we have chosen [Fe(teeCl)6](BF4)2

(teeCl¼ 1-(2-chloroethyl)tetrazole). According to Refs. [20, 21] this compound
forms neutral sheets (Fig. 6); an LS!HS transition is accompanied by the change
of Fe–Fe distance from 10.196 Å (LS) to 10.422 Å (HS), �r¼ 0.226 Å; the average
bond length Fe–N is increased by 0.352 Å (rFe–N¼ 2.209 Å (HS) and 1.856 Å
(LS)). The distances Fe–BF4

� in HS and LS states are also known: 5.94 Å (HS)
and 5.838 Å (LS). According to quantum chemical calculations (ZINDO=1
HyperChem 5TM), the cation [FeL6]2þ in the prototype compound has a negligibly
small electric dipole moment. Therefore the electric dipole–dipole interaction
between [FeL6]2þ species is not included into the basic model.

In order to take into account the effects of the long-range coulombic forces the
model system of ionic complexes includes a chain of 5 [FeL6]2þ units separated by 4
pairs of mono-charged anions. Two outer cations are supposed to be always in the
LS state (Fig. 7). The model employed involves 78 binary point-charge interactions

Fig. 7. Model system of ionic complexes involving 5 [FeL6]2þ cations separated by 4 pairs of

(BF4)� anions (spin state AAABA)

Fig. 6. Crystal structure of [Fe(teeCl)6](BF4)2 [21] with highlighted contacts between cations

[Fe(teeCl)6]2þ (larger circles) and anions (smaller circles)
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between 13 ions. The Lennard-Jones contacts between [FeL6] 2þ and BF4
� (yielding

the major contribution), as well as the contacts between [Fe(teeX)6]2þ species and
BF4

�–BF4
� contacts have been taken into consideration (Fig. 7).

Basic distances in this model are: rFe(A)–Fe(A), rFe(A)–An, rFe(B)–Fe(B) and
rFe(B)–An; the distances between Fe(II) ions in hetero-molecular pairs (rFe(A)–Fe(B))
were calculated according to the additivity rule. The distances rAn–An in Fe(A)–
(An)2–Fe(A), Fe(B)–(An)2–Fe(B), and Fe(A)–(An)2–Fe(B), were computed from
geometry considerations. The depth of the Lennard-Jones potential has been
assumed to be "Fe(A)–Fe(A)¼ 12 kJ=mol and "Fe(B)–Fe(B)¼ 14 kJ=mol. The depth
of the potential well in BF4

�–BF4
� pair was estimated from the evaporation

heat of isoelectronic CF4, (�¼ 13.0 kJ=mol) yielding "An–An¼ 2�=c� 4 kJ=mol.
Employing Berthelot’s rule "Fe(A)–An� 8 kJ=mol and "Fe(B)–An� 9 kJ=mol have
been obtained. The depth of the potential well in hetero-molecular pairs Fe(A)–
Fe(B) has been calculated according to the modified Berthelot’s rule (Eq. (6)). The
energy was minimised as described in the Methods.

Ionic systems have been explored at zero compression alone (r=ropt¼ 1);
transition curves were simulated for a system with �E0¼ 10 kJ mol�1 and
T1=2¼ 155 K (�S0¼ 64.5 J mol�1 K�1), and non-ideality parameters computed
for actual potentials. Effects of magnetic scalar coupling in ionic systems are
similar to those in systems of neutral complexes and will not be considered.

Lennard-Jones and Coulombic Point-Charge Potentials

Equilibrium distances obtained for this system are shown in Table 4. Homogeneous
distances vary from configuration to configuration, however these variations do
not exceed 10�4 Å. The pattern of energy levels (DA>0, DB<0) implies that LS
neighbours lower down the energy of a central molecule whereas HS neighbours
increase it.

This model yields a very small negative excess energy �EE¼�0.353 kJ=mol
and negligible negative asymmetries of splittings j�A(B)j<0.001 kJ=mol. Such a
system not merely follows the model of binary interactions: a pseudo-ideal law of
mass action would describe it with a good accuracy. Experimental examples of
such behaviour are known (e.g., [Fe(2-pic)3]Cl2MeOH, [22]).

Larger excess energies can be obtained when "AB deviates from Berthelot’s
rule. Deviations of the order �"¼� 0.03 bring about considerable excess energies
causing critical phenomena: abrupt spin crossover at �"<0 and two-step spin

Table 4. Equilibrium distances computed for the basic model system of ionic complexes

AAA BBB AAB BAB BBA ABA

rFe(A)–An= Å 5.838 – 5.838 5.838 5.838 5.838

�3.9 10�6 þ7.2 10�6 þ1.6 10�5 þ2.7 10�5

rFe(B)–An= Å – 5.940 5.940 5.940 5.940 5.940

�3.9 10�6 þ7.3 10�6 þ1.6 10�5 þ2.7 10�5

rFe(A)–Fe(A)= Å 10.196 – 10.196 10.196 10.196 10.196

�6.8 10�6 þ1.3 10�5 þ2.7 10�5 þ4.7 10�5

rFe(B)–Fe(B)= Å – 10.422 10.422 10.422 10.422 10.422

�6.9 10�6 �1.3 10�5 þ2.8 10�5 þ4.8 10�5
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crossover at �">0). These deviations do not affect the asymmetries �A and �B

that remain negligibly small.

Electric Dipole–Dipole Interaction of Ligands

If the periphery parts of ligands contain polar groups then the ligands belonging to
neighbouring complexes can interact via dipole–dipole mechanism as it has been
shown for the prototype compound [Fe(teeCl)6](BF4)2 [3]. The contribution of this
interaction towards non-ideality parameters can be estimated using a simplified
model shown in Fig. 8: an LS!HS transition changes the distance between
dipoles thus producing variations of the energy of dipole–dipole interaction. This
interaction is characterised by two parameters: electric dipole moment (�) and the
effective length of the ligand (d0, Fig. 8).

Ligand–ligand attraction brings about positive excess energy whereas the
repulsion of ligands negatively contributes towards �EE. Detectable changes can
be expected when two dipoles �¼ 2 D are at the distance of ca. 4 Å. Smaller

Fig. 8. A simplified model for the calculation of the contribution of dipole–dipole interaction of

ligand towards non-ideality parameters

Table 5. Non-ideality parameters �EE and �A(B) in systems with attractive and repulsive dipole–

dipole interactions of ligands

�

D
d0

�A
�EE

kJ=mol

�A

kJ=mol

�B

kJ=mol

�

D
d0

�A
�EE

kJ=mol

�A

kJ=mol

�B

kJ=mol

attr 2.0 2.2 þ50.02 �0.955� 0.869�
2.0 1.6 þ3.46 �0.005 0.004 4.0 1.5 10.87 �0.031 0.021

2.0 1 þ0.37 0.000 0.000 2.0 1.5 2.42 �0.003 0.002

0.0 �0.35 0.000 0.000 0.0 �0.35 0.000 0.000

rep 2.0 1 �1.07 0.000 0.000 2.0 1.5 �3.10 �0.001 0.001

2.0 1.6 �4.11 �0.002 0.002 4.0 1.5 �11.15 �0.027 0.018

2.0 2.2 �41.91 �1.108� 0.877�

� Nonzero asymmetries �A(B) at d0>2 Å are most probably the result of an approximate character of

the minimisation of energy employing numerical differentiation
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distances and=or larger moments make this contribution quite considerable. The
dependence of thus calculated excess energy on d0 (Table 5) can be approximated
by Eq. (14) in which �E0;E ¼�0.353 kJ=mol is the excess energy of the basic
system in the absence of ligand–ligand interaction, a–d0¼ rdd is the distance
between dipoles, and b is a normalising coefficient.

�EE ¼ b

ða� d0Þ3
þ�E0;E ð14Þ

The dependence of the excess energy on the magnitude of the dipole moment
can be approximated by Eq. (15).

�EE ¼ �E0;E þ c�2 ð15Þ
Such a linear relationship has been observed between estimates of the excess

energy and the square of the electric dipole moment of the side chain of tetrazole
ligand in a series of homologues of the prototype compounds [Fe(teeX)6](BF4)2

(X¼ F, Cl, Br, and I [3]). Furthermore, the variations of �EE in this series quanti-
tatively corresponded to the electrostatic contribution computed using experimen-
tal interatomic distances [3].

At a first glance the dipole–dipole interaction of ligands should not bring about
anything unusual into the behaviour of a spin crossover system. The increasing
(due to variations of either � or d0) strength of interaction in pairs with repulsive
arrangements of dipoles may bring about a conversion from the gradual to the two-
step spin crossover (Fig. 9, curves 4 and 5). Attractive interaction, according to this
model, must bring about an abrupt spin crossover (Fig. 9, curves 1 and 2).

One must however consider a specific feature of ionic systems in which (accord-
ing to experimental data) Fe2þ–Fe2þ distances are only slightly affected by spin
transitions compared to Fe2þ–N bond lengths. Under these conditions a ligand–
ligand attraction causes a correlation of Fe2þ–N bond-lengths in neighbouring com-
plexes: a contraction of this bond in one complex causes the corresponding bond
elongation in its neighbours. Such a correlation stabilises HS–LS pairs, i.e. brings
about negative excess energy leading to the two-step spin crossover. This mecha-
nism (‘ligand relocation mechanism’ [4]) explains the dominating two-step charac-
ter of spin crossover in polynuclear compounds – an extreme case of ligand–ligand

Fig. 9. Effects of the variation of electric dipole moment (�) at constant d0¼ 1.8 Å; attractive

interaction: �¼ 1.5 D (1), 1.0 D (2), 0.0 D (3); repulsive interaction: �¼ 1.0 D (4), 1.5 D (5); the

dashed line represents the degree of order
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attraction. The energy of stabilisation is apparently proportional to r�6 and can be
accounted for by positive deviations from Berthelot’s rule.

HOMO–LUMO Overlap in HS–LS Pairs

In ionic systems this interaction can be described as a partial electron transfer from
HS complexes to neighbouring LS complexes. In the configuration AAABA this
transfer increases the positive charge on the B (HS) cation by 2� and decreases
positive charge on two neighbouring A (LS) cations by �. Similar schemes can be
drawn for other configurations (Fig. 10A). Charge transfer according to this model
affects the excess energy and unexpectedly brings about positive asymmetries of
splittings (�Affi�B). The dependence of �A(B) on transferred charge is quadratic
(Fig. 10B; Eq. (16)).

�AðBÞ ¼ �B ¼ 1201�2 � 11:47� � 0:003 ð16Þ
The coefficients in Eq. (16) are practically independent of the strength of other

interactions such as ligand–ligand attraction=repulsion. The excess energy is a
quadratic function of � passing through a maximum (Fig. 10B; Eq. (17)) in which
�E0,E is controlled by background interactions; other coefficients are constant and
for the considered system a¼ 104.1 kJ mol�1 �ee�1 and b¼ 4008 kJ mol�1 �ee�2.

�EE ¼ �E0;E þ a� � b�2 ð17Þ
The nature of critical phenomena expected from such charge transfer depends

on the interplay of �EE and asymmetries of splittings �A(B). When the background
excess energy is positive (e.g. due to ligand–ligand attraction) increasing charge
transfer may cause quite non-trivial transformations of the shape of transition curve
(Fig. 11).

At small �, both �EE and �A(B) are small and spin crossover is gradual (Fig. 11,
curve 1). Increasing � increases positive excess energy that reaches its maximum

Fig. 10. Partial electron transfer due to the overlap of eg orbitals in model ionic systems (A) and

dependencies of non-ideality parameters on the transferred charge (B); model system includes

attractive dipole–dipole interaction of ligands (�¼ 1.9 D, d0¼ 1.5 Å)
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at �� 0.015�ee. Assisted by small positive �A(B) at this point it may cause an abrupt
spin crossover with hysteresis (Fig. 11, curve 3). Further increasing � causes �EE

to decrease and at a certain point it becomes negative. In combination with increas-
ing positive asymmetries it may bring about ordering and the two-step spin cross-
over (Fig. 11, curve 4).

Regression of Experimental Data

Minimisation of energy in chains of three molecules of neutral spin crossover
complexes can easily be inserted into the regression program allowing one to
parameterise transition curves in terms of molecular potentials. There are several
such potentials involved (see above) all of them defining one non-ideality param-
eter – the excess energy. The model is therefore overparameterised unless all
potentials but one are fixed according to the available experimental and theoretical
evidence. Let us consider possible scenarios on an example of parameterisation of
spin crossover in Fe(bipy)[H2B(pz)2]2 (H2B(pz)2¼ dihydrobis(1-pyrazolyl)borate)

Fig. 11. Effects of HS!LS charge transfer due to the overlap of eg orbitals of neighbouring

complexes in a model ionic system with ligand–ligand attraction (�¼ 1.9 D, d0¼ 1.5 Å); dashed

line represents the degree of order

Table 6. Parameters of binary molecular interactions approximating the experimental transition curve of spin

crossover in Fe(bipy)[H2B(pz)2]2 [23]; standard energy of spin crossover has been fixed at �E0¼ 8.0 kJ=mol

according to calorimetric data [23]

Potential �yx T1=2

K

"AA

kJ mol�1

"BB

kJ mol�1

�A

D

�B

D
��

Lennard-Jones 0.022 162.1 � 0.4 11.684 � 0.114 15.931 � 0.093 0 0

Lennard-Jonesþ
dipole–dipole

0.022 162.1 � 0.4 12.000 16.056 � 0.045 12.424 11.865

Lennard-Jonesþ
dipole–dipole

0.022 162.1 � 0.4 16.050 � 0.044 12.000 12.424 11.865

Dipole–dipole

("AA¼ "BB)

0.022 162.1 � 0.4 12.000 12.000 14.374 11.865

Dipole–dipole

("AA¼ "BB)

0.022 162.1 � 0.3 12.000 12.000 12.424 11.865 �0.023
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[23]. For this compound lattice constants in HS and LS states are known [24] and
may serve as rough estimates of intermolecular distances: rAA¼ 13.918 Å and
rBB¼ 14.135 Å. Semi-empirical calculations (HyperChem5TM, ZINDO=1) on iso-
lated molecules yield �A¼ 12.424 D and �B¼ 11.865 D.

For purely Lennard-Jones binary interactions (�A¼�B¼ 0, first row in Table 6)
one can obtain a satisfactory description with "BB–"AA¼ 4.25 kJ=mol. The
introduction of electric dipole–dipole interactions with fixed electric dipole
moments �A¼ 12.424 D and �B¼ 11.865 D slightly decreases this difference
"BB–"AA¼ 4.05 kJ=mol (second row in Table 6). The excess energy is controlled
by the magnitude of the difference of the depths of potential wells in HS–HS and
LS–LS pairs, therefore the same description can be obtained at "AA>"BB (third
row in Table 6).

One can exclude the contribution of the Lennard-Jones potential towards the
excess energy by setting "AA¼ "BB. Transition curves can then be parameterised by
optimising electric dipole moments (e.g. having some reasons to doubt the results
of quantum chemical calculations). The required difference of electric dipole
moments proves to be ca. 2.5 D (fourth row in Table 6).

If there is some evidence that an HOMO–LUMO overlap occurs then one can
fix the electric dipole moments and adjust the coefficient ��; in the actual case
of spin crossover in Fe(bipy)[H2B(pz)2]2 one has to suppose that HOMO–LUMO
overlap brings about the depression of the energy of dipole interactions in HS–LS
pairs by 2.3% (last row in Table 6).

We see that several reasonable scenarios of optimisation can be suggested for
the parameterisation of transition curves in terms of molecular potentials. The
actual choice depends on the available experimental and theoretical data on dielec-
tric and other properties of investigated spin crossover compounds.

The procedure of minimization of energy in model systems of ionic spin cross-
over compounds is too complicated to be inserted into a regression program. Tran-
sition curves can be parameterised in terms of formal non-ideality parameters
(�EE, �A, �B). The latter can be further discussed from the point of view of
model potentials as it has been done [3] for the homologues of the prototype
compound mentioned above.

Another approach is to insert into the regression program simple relationships
derived above. For example the effect of HOMO–LUMO overlap can be repre-
sented as the dependence of �EE, �A, and �B on the transferred charge �
(Eqs. (16) and (17)). Using these equations one can parameterise transition curves
in terms of �E0, T1=2, background excess energy �E0,E, and transferred charge �.
Let us apply this method to the description of the two-step spin crossover in
[Fe(2� pic)3]Cl2EtOH (data from Ref. [25]).

Under the condition �A¼�B the regression yields a satisfactory (although not
completely adequate description (Fig. 12A) with parameters indicating the transfer
of 0.045 electron from HS to LS species (first row in Table 7). As might be
expected this description is similar to that obtained in terms of formal non-ideality
�EE and �A¼�B (see Ref. [6]). However the charge transfer mechanism implies
a strong correlation between �EE and �A(B). Therefore the background excess
energy in the latter case is a large positive value (þ2.9 kJ=mol, Table 7), whereas
when �EE and �A(B) were considered as independent parameters it was a small
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negative (�0.54 kJ=mol, see Ref. [6]). Therefore the interpretation of these results
might be completely different; additional data are required in order to make a
correct decision, e.g. some evidence of the HS–LS electron transfer.

As has been mentioned in Ref. [6] the condition �A¼�B represents a special
case of pseudo-binary interactions in which parameters arising from ternary inter-
actions affect the shape of transition curve within the range of the existence of
ordered structures alone. More general case implies the unequal asymmetries of
splittings �A6¼�B; ternary interactions then affect the shape of transition curve in
the whole range of compositions. In the model of charge transfer this inequality can
be introduced by additionally adjusting the ratio between �A and �B simulating
thus the effect of ternary interactions. The regression according to this method
yields a better description (second row in Table 7, Fig. 12B) however still not
reaching the level of the model of completely independent �EE, �A, and �B

(�yx¼ 0.019, Ref. [6]). This is due to the strong correlation between the adjustable
parameters defined by Eqs. (16) and (17). Therefore for practical purposes of ob-
taining the best fit it is more convenient to parameterise a transition curve in terms
of formal parameters with subsequent analysis of their estimates according to some
model of molecular interactions.

In the present paper we have defined the parameters of formalism developed
earlier [1–6] in terms of molecular potentials. The combination of the Lennard-

Fig. 12. Spin crossover in [Fe(2-pic)3]Cl2EtOH [25] approximated by the model of HS!LS charge

transfer under the condition �A¼�B (A) and with adjustable �A=�B (B); estimates of parameters

are given in Table 7

Table 7. Estimates of parameters of the model of HS!LS charge transfer approximating spin

crossover in [Fe(2-pic)3]Cl2EtOH (data from Ref. [25]); temperature was used as the independent

variable

�yx �E0

kJ mol�1

T1=2

K

�E0;E

kJ mol�1

�

e

�A=�B

0.029 6.773 � 0.758 117.1 � 0.2 2.931 � 0.018 0.0446 � 0.0001 1

0.021 7.996 � 0.725 116.4 � 0.2 2.953 � 0.020 0.0450 � 0.0001 0.882 � 0.007
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Jones and electric dipole–dipole potentials, chosen as the basic model for neutral
complexes, yields positive excess energies controlled by the difference of
the depths of the Lennard-Jones potentials in HS–HS and LS–LS pairs as well
as by the difference of electric dipole moments of HS and LS states. At
�"¼ 2 kJ=mol and ��¼ 0.4 D (prototype compound) one obtains a modest posi-
tive excess energy of ca. 1 kJ=mol that could cause an abrupt spin crossover in
systems with T1=2<70 K. For systems with transition temperature above 150 K the
abrupt spin crossover can be expected at �">4 kJ=mol or at ��>1.4 D. These
values are within a reasonable range, however choosing a proper scenario of regres-
sion requires additional information on dipolar and other properties of spin cross-
over compounds. The HOMO – LUMO overlap in HS–LS pairs can yield both
positive and negative �EE depending on the relative magnitude of two contribu-
tions: (i) stabilisation of HS–LS pairs (negative �EE) and (ii) depression of the
energy of dipole–dipole interactions in HS–LS pairs (positive �EE). Magnetic
scalar coupling yields a positive temperature-dependent �EE, i.e. it contributes
towards both �EE and �SE. The overall effect of this interaction is not large:
one can expect a small increase of the slope of transition curve due to magnetic
scalar coupling, both ferro- and antiferromagnetic. An abrupt spin crossover (in
systems with T1=2¼ 150 K) can only be expected at unrealistically large coupling
constants jJj>40 cm�1.

The combination of Lennard-Jones and coulombic point-charge potentials
(basic model for ionic complexes) yields very small �EE; such systems can be
approximated by linear van’t Hoff plots with a good accuracy. Detectable excess
energies in such systems may arise from interactions of the periphery parts of
ligands belonging to neighbouring complexes. Ligand–ligand attraction, on the
one hand, yields a positive �EE but, on the other hand, it can stabilise HS–LS
pairs via the ‘‘ligand-relocation mechanism’’ [3] equivalent to a negative excess
energy. The HOMO–LUMO overlap in ionic systems considered as a partial elec-
tron transfer from HS complexes to neighbouring LS complexes produces correlated
changes in both �EE and asymmetries of splittings (�A��B). In some cases this
might bring about a non-trivial variation of the shape of transition curve: increasing
charge transfer yields at first an abrupt spin crossover and then a two-step transition.

The description of experimental data given by the model of binary potentials is
satisfactory but not exactly adequate. It can be improved by introducing ternary
interactions, for example, represented by the Axilrod-Teller potential [26]. This
subject is however beyond the scope of the present paper.

Methods

The minimisation of energy has been performed in Microsoft ExcelTM worksheets
using the Excel Solver tool. For systems of neutral complexes an analytical expres-
sion for the conditions of the minimum of energy has been derived. This allowed
one to directly optimise parameters aAA and aBB of the Lennard-Jones potential
for the minima of energy in AAA and BBB configurations at experimental dis-
tances (rAA and rBB known for the prototype compound). The parameter aAB for
hetero-molecular pairs has been calculated according to the additivity rule: aAB¼
1=2(aAAþ aBB). Then the distance in hetero-molecular pairs has been optimised
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for the minimum of energy in the BAB configuration. Thus obtained values have
been used in calculations of energies in all other configurations yielding EAAA,
EAAB, EBAB, etc. and further DA, DB, �A, and �B.

A similar procedure has been employed in the minimisation of energy in model
system of ionic complexes. The minimum of energy was found employing
numerical differentiation in finite differences. At first the parameters aFe(A)–An

and aFe(B)–An were optimised to the minima of energies in configurations AAA
and BBB respectively at the fixed distances provided by XRD data on the prototype
compound. Other parameters aij were computed according to the additivity rules.

At the second stage the distances rFe(A)–Fe(A), rFe(A)–An, rFe(B)–Fe(B), and
rFe(B)–An were optimised to the minimum of energy in configurations BAB,
ABA, AAB, and BBA. There are four basic distances to be optimised each con-
figuration that makes the model overparameterised. As a regularisation we have
assumed that the ratios rFe(A)–An=rFe(A)–Fe(A), rFe(B)–Fe(B)=rFe(A)–Fe(A), rFe(B)–An=
rFe(A)–Fe(A), rFe(A)–N=rFe(A)–Fe(A), and rFe(B)–N=rFe(A)–Fe(A), are identical in all
configurations. These ratios have been calculated from XRD data allowing us to
optimise a single distance rFe(A)–Fe(A) each configuration.

Simulation of transition curves and parameterisation of experimental data have
been achieved according to the described above equations employing a multipur-
pose non-linear regression program OPTIMI supplied with the monograph [27].
Methods of solving equations of the law of mass action with temperature as the
independent variable have been described in Ref. [3].

Acknowledgements

We would like to thank Prof. R. F. Jameson (University of Dundee, Scotland, UK) and

Prof. Yu. A. Ustynyuk (Moscow State University, RF) for many helpful discussions. Financial support

from the ‘‘Fonds zur F€oorderung der Wissenschaftlichen Forschung in €OOsterreich’’ (Project 15874-N03)

is gratefully acknowledged.

References

[1] Koudriavtsev AB (1999) Chem Phys 241: 109

[2] Koudriavtsev AB, Jameson RF, Linert W (2001) The Law of Mass Action. Springer, Berlin

Heidelberg

[3] Koudriavtsev AB, Stassen AF, Haasnoot JG, Grunert M, Weinberger P, Linert W (2003) Phys

Chem Chem Phys 5: 3666

[4] Koudriavtsev AB, Stassen AF, Haasnoot JG, Grunert M, Weinberger P, Linert W (2003) Phys

Chem Chem Phys 5: 3676

[5] Linert W, Grunert M, Koudriavtsev AB (2004) Isoequilibrium and Isokinetic Relationships in

Spin Crossover. In: G€uutlich P, Goodwin H (eds.) Top Curr Chem, vol 235. Springer, Berlin

Heidelberg, p 105

[6] Koudriavtsev AB, Linert W (2005) Monatsh Chem (Part I)

[7] Boca R, Linert W (2003) Monatsh Chem 134: 199

[8] Spiering H (2004) Elastic Interaction in Spin-Crossover Compounds. In: G€uutlich P, Goodwin H

(eds) Top Curr Chem, vol 235. Springer, Berlin Heidelberg, p 171

[9] Jensen L (1965) Many-centre Forces and Stability of Crystals. In: Sinanoglu O (Ed) Modern

Quantum Chemistry. Academic Press, New York, p 231

52 A. B. Koudriavtsev and W. Linert



[10] Spiering H, Kohlhaas T, Romstedt H, Hauser A, Bruns-Yilmaz C, G€uutlich P (1999) Coord Chem

Rev 190–192: 629

[11] Letard JF, Guionneau P, Rabardel L, Howard JAK, Goeta AE, Chasseau D, Kahn O (1998) Inorg

Chem 17: 4432; Guionneau P, Letard JF, Yufit DS, Chasseau D, Bravic G, Goeta AE, Howard

JAK, Kahn O (1999) J Mater Chem 9: 985

[12] Moelwyn-Hughes EA (1970) Physikalische Chemie. Georg Thieme Verlag, Stuttgart

[13] Kalinnikov VT, Rakitin YuV (1980) Vvedenie v magnetokhimiyu. Nauka, Moskva

[14] Carlin RL (1986) Magnetochemistry. Springer, Berlin Heidelberg

[15] Ksenofontov V, Spiering H, Reiman S, Garcia Y, Gaspar AB, Moliner N, Real JA, Gutlich P

(2001) Chem Phys Lett 348: 381

[16] Letard JF, Real JA, Moliner N, Gaspar AB, Capes L, Cador O, Kahn O (1999) J Am Chem Soc

121: 10630

[17] Chastanet G, Gaspar AB, Real JA, Letard JF (2001) J Chem Soc Chem Comm 2001: 819

[18] Gaspar AB, Ksenofontov V, Real JA, G€uutlich P (2003) Chem Phys Lett 373: 385

[19] Brooker S, de Geest DJ, Kelly RJ, Plieger PG, Moubaraki B, Murray KS, Jameson GB (2002)

J Chem Soc, Dalton Trans 2002: 2080

[20] Dova E, Stassen AF, Driessen RAJ, Sonneveld E, Goubitz K, Peschar R, Haasnoot JG, Reedijk J,

Schenk H (2001) Acta Cryst B 57: 531; Dova E, Peschar R, Sakata M, Kato K, Stassen AF,

Schenk H, Haasnoot JG (2004) Acta Cryst B 60: 528

[21] Stassen AF, Grunert M, Dova E, Mueller M, Weinberger P, Wiesinger G, Schenk H, Linert W,

Haasnoot JG, Reedijk J (2003) Eur J Inorg Chem 12: 2273

[22] Sorai M, Ensling J, Hasselbach KM, G€uutlich P (1977) Chem Phys 20: 197

[23] Moliner N, Salmon L, Capes L, Munoz MC, Letard JF, Bousseksou A, Tuchagues JP, McGarvey

JJ, Dennis AC, Castro M, Burriel R, Real JA (2002) J Phys Chem B 106: 4276

[24] Real JA, Munoz MC, Faus J, Solans X (1997) Inorg Chem 36: 3008

[25] Bousseksou A, Nasser J, Linares J, Boukheddaden K, Varret F (1992) J Phys I France 2: 1381

[26] Axilrod BM, Teller E (1943) J Chem Phys 11: 299

[27] Kudryavtsev A, Linert W (1996) Physico-Chemical Applications of NMR. WSPC, Singapore

Spin Crossover in the Solid State. Part II 53


